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1. Introduction

Our goal is to find explicit expressions for the fields of the SO(3) and U(2) BPS

monopoles [1, 2] with up to two Dirac singularities. These are pairs (A,Φ) of the gauge

field A = Aadx
a and the Higgs field Φ in a three-dimensional flat space satisfying the

Bogomolny equation F = − ∗DΦ, which in components reads

∂aAb − ∂bAa − i[Aa, Ab] = −ǫabc(∂cΦ − i[Ac,Φ]). (1.1)

The fields (A,Φ) are everywhere regular with the exception of a number of specified points

{~pα}. At ~pα the fields have a Dirac singularity of a given charge eα imbedded in the gauge

group, i.e. the fields approach those of the Goddard-Nuyts-Olive (GNO) monopoles of [3].

To be more specific, there is a gauge in which Φ(~x) = eα
B

2|~x−~pα|
+ O(1), where B is an

element of the Lie algebra of the gauge group, satisfying exp(2πiB) = 1. We call such a

singularity minimal if there is no 0 < µ < 1 such that exp(2πiµB) = 1 and if eα = −1 or 1.

We shall focus in this paper on the case of a single nonabelian monopole with one or

two minimal singularities. The exact definition of the nonabelian charge, as given in [4],

corresponds to an intuitive notion of the charge. Namely, for a charge one configuration,

whenever the distance between the monopole and the singularities is large we expect the

fields in the vicinity of the monopole to be well approximated by the BPS ’t Hooft-Polyakov

solution [5, 6, 2] and the fields near each singularity to be approximated by the Dirac-GNO

solution.

The main result of this paper is the set of eqs. (3.7), (3.8), (3.9) expressing the fields

of the one U(2) monopole with two oppositely charged singularities. It is derived using the

Nahm transform techniques [7, 8].
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In section 2 we outline the Nahm data and the Nahm transform for singular monopoles.

In section 3 we specify the Nahm data for the charge one case and use the Nahm transform

to derive the U(2) solution. Exploring various limits of this configuration in section 4 we

also obtain the following solutions:

1. a U(2) monopole with two minimal singularities of any charge sign: eqs. (4.1), (3.9),

2. an SO(3) monopole with two minimal singularities: eqs. (4.2), (3.9),

3. a U(2) monopole with one minimal singularity: eqs. (4.3), (4.4),

4. an SO(3) monopole with one minimal singularity: eqs. (4.2), (4.4),

5. an SU(2) monopole with one minimal singularity: eqs. (4.7), (4.8).

We conclude with a brief discussion of our results in section 5.

2. Nahm transform

The Nahm data for singular monopoles is described in detail in [10]. For a nonabelian

charge k U(2) monopole with k positively charged singularities and k negatively charges

ones, the Nahm data consists of two 2k-dimensional vectors Q−λ and Qλ and four

Hermitian k × k Nahm matrices T0(s), T1(s), T2(s), and T3(s) defined on the intervals

(−∞,−λ), (−λ, λ), and (λ,+∞) with regular limiting behavior at the boundaries of the

corresponding intervals. We shall often combine the last three of the Nahm matri-

ces into a vector ~T (s) = (T1(s), T2(s), T3(s)). The Nahm equations for the quadruplet

(T0(s), T1(s), T2(s), T3(s)) of the rank k Hermitian matrix valued functions read

d

ds
Ta − i[T0, Ta] + iǫabcTbTc = 0, (2.1)

where each of a, b, and c run over the values 1, 2 or 3, and the summation over b and c is im-

plied. The Nahm quadruplet (T0, ~T ) transforms under a U(k) valued gauge transformation

g(s) as (T0, ~T ) 7→ (g−1T0g + ig−1dg, g−1 ~Tg), while Qλα
7→
(

g−1(λα) 0

0 g−1(λα)

)

Qλα
. We

can understand the Q’s to be two-spinors in the fundamental representation of the gauge

group. The matching conditions at the points s = λα (with λ1 = −λ and λ2 = λ) are the

same as in [11]1 and can be written as:

Tb(λα+) − Tb(λα−) = −1

2
tr2×2Qλα

Q†
λα

σb, (2.2)

where tr2×2 is the trace in the 2-dimensional spinor space only.

1We compare to the expressions of section 2 in this reference. We suspect that eq. (0.2) of the introduction

has a sign misprint.
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Given the Nahm data satisfying the Nahm equations and the matching conditions (2.2)

for any three-vector ~x, we construct the Weyl operator /D defined by

/Dρ(s) =







(

1⊗( d
ds

− iT0) − ~σ⊗(~T − ~x)
)

ρ(s)

Q†
−λρ(−λ)

Q†
λρ(λ)






. (2.3)

Here ρ(s) is a fundamental two-component spinor-valued section continuous on the real

line. The crucial observation behind the Nahm transform is that the Nahm equations

together with the matching conditions are equivalent to

/D†/D = 1⊗

((

d

ds
− iT0

)2

+ T 2
1 + T 2

2 + T 2
3

)

, (2.4)

and that thus /D†/D is strictly negative and commutes with the Pauli σ-matrices.

The dual Weyl equation is /D†

(

ψ

χ

)

= 0, where χ =

(

χ−λ

χλ

)

, reads

(

1⊗

(

d

ds
− iT0

)

+ ~σ⊗(~T − ~x)

)

ψ + δ(s + λ)Q−λχ−λ + δ(s − λ)Qλχλ = 0. (2.5)

From now on let us denote by

(

ψ

χ

)

a matrix with columns being the linearly indepen-

dent solutions of the dual Weyl equation (2.5). There are two square integrable linearly

independent solutions of eq. (2.5). These can be orthonormalized imposing the condition
∫

ψ†ψds + χ†χ = I2×2. The monopole fields are then given by

Φ = λ(χ†
λχλ − χ†

−λχ−λ) +

∫ ∞

−∞
ψ†sψds, (2.6)

Aj = iχ† ∂

∂xj
χ+ i

∫ ∞

−∞
ψ† ∂

∂xj
ψds. (2.7)

One can note that the rank of the monopole fields is equal to the number of independent

solutions of eq. (2.5).

For the purposes of this paper we can restrict ourselves to the Abelian Nahm data

only. In other words, we have k = 1 and, once T0(s) is gauge transformed to zero, the

Nahm equations imply that the Nahm matrices ~T are constant on each interval.

3. One U(2) monopole with two oppositely charged singularities

In this section we investigate a monopole solution with a negative charge Dirac singularity

at ~p1, a positive charge Dirac singularity at ~p2, and the monopole position parameter ~m.

We denote the relative positions by ~d1 = ~m−~p1 and ~d2 = ~m−~p2. For an observation point

~x we denote its position with respect to the singularities by ~z1 = ~x − ~p1 and ~z2 = ~x − ~p2,

and its position with respect to the monopole by ~r = ~x − ~m. We also let zα = |~zα| and

dα = |~dα| for α = 1, 2.
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As mentioned in the previous section, we have k = 1. We choose a gauge in which T0

vanishes, then the Nahm equations imply that the Nahm matrices ~T are 1 × 1 and that

they are constant on each interval. In particular, to produce the monopole specified above,

we have

~T =











~p1 for s < −λ,
~m for − λ < s < λ,

~p2 for s > λ,

(3.1)

and the matching conditions (2.2) become 2~d1 = −Q†
−λ~σQ−λ and 2~d2 = Q†

λ~σQλ. At this

point it is convenient to introduce Weyl spinors Q1± and Q2± determined by the relations

Q†
α±Qα± = dα ± ~σ · ~dα for α = 1, 2. We have Q†

α±Qα∓ = 0. Also note that these Q’s are

defined up to a phase factor. This arbitrariness corresponds to some of the gauge freedom

of the final monopole solution. Now the solutions of the matching conditions are provided

by Q−λ = Q1− and Qλ = Q2+.

Solving the dual Weyl equation is straightforward once we introduce the spinors ζα±
for α = 1, 2 defined by the relations ζ†α±ζα± = zα ± ~σ · ~zα. The solution to eq. (2.5) then

takes the form

ψ(s) =



















e~σ·~z1(s+λ) ζ1+Q
†
1+

Q
†
1+

ζ1+
e−~σ·~rλN for s < −λ

e~σ·~rsN for − λ < s < λ

e~σ·~z2(s−λ) ζ2−Q
†
2−

Q
†
2−ζ2−

e~σ·~rλN for s > λ,

, (3.2)

χ−λ =
ζ†1−

ζ†1−Q1−

e−~σ·~rλN, (3.3)

χλ = − ζ†2+

ζ†2+Q2+

e~σ·~rλN. (3.4)

The matrix N is independent of the variable s. The ortonormalization condition implies

that

N =

√
r

2

(

√

z1 + d1+
√
D1+

√

z1+d1−
√
D1

~σ·~r
r

)(

√

z2+d2 +
√
D2−

√

z2+d2−
√
D2

~σ·~r
r

)

√

(

(z1 + d1)(z2 + d2) + r2
)

sinh(2λr) + r(z1 + d1 + z2 + d2) cosh(2λr)

,

where for brevity we introduced D1 = (z1 + d1)
2 − r2 and D2 = (z2 + d2)

2 − r2. The

normalization condition restricts N up to an s-independent U(2) transformation acting on

the right. Multiplying the normalization matrix N above on the right by an element of

U(2) would amount to a gauge transformation of the resulting monopole fields.

Introducing the following simple functions

L = ((z1 + d1)(z2 + d2) + r2) sinh(2λr) + r(z1 + z2 + d1 + d2) cosh(2λr), (3.5)

K = ((z1 + d1)(z2 + d2) + r2) cosh(2λr) + r(z1 + z2 + d1 + d2) sinh(2λr), (3.6)
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we use eqs. (2.6), (2.7) to obtain the following monopole solution:

Φ =
1

4z2
− 1

4z1
+ ~σ · ~φ, (3.7)

A =
(~r × ~z1) · d~x

2z1D1
− (~r × ~z2) · d~x

2z2D2
+ ~σ · ~A, (3.8)

where ~φ and ~A are

~φ =
~r

r

((

λ+
1

4z1
+

1

4z2

)

K

L
− 1

2r

)

− r
√
D1D2

2L

(

~d1⊥

z1D1
+

~d2⊥

z2D2

)

, (3.9)

~A =
~r × d~x

r

((

λ+
z1+d1

2D1
+
z2 + d2

2D2

)√
D1D2

L
− 1

2r

)

− (~r × ~z1) · d~x
2z1D1

~r

r

K

L
− (~r × ~z2) · d~x

2z2D2

~r

r

K

L

−r
√
D1D2

L

(

~σ · (~z1 × d~x)⊥
2z1D1

+
~σ · (~z2 × d~x)⊥

2z2D2

)

.

Here (~v × d~x)⊥ is the projection of the vector ~v × d~x on the plain orthogonal to ~r, i.e.

(~v × d~x)⊥ = ~v × d~x− ((~v × d~x) · ~r) ~r
r2 .

4. Other solutions

4.1 U(2) monopole with two singularities of charges ±1

This solution is obtained by adjusting the sign of the Abelian (trace) part of the singular-

ities.

Φ =
e1
4z1

+
e2
4z2

+ ~σ · ~φ, (4.1)

A = − e1
2z1D1

(~r × ~z1) · d~x− e2
2z2D2

(~r × ~z2) · d~x+ ~σ · ~A,

where the nonabelian parts of the fields ~φ and ~A are still given by eq. (3.9). We note that

deriving this solution via the Nahm transform is more challenging, since in this case the

required Nahm data is nonabelian.

4.2 SO(3) monopole solution with two singularities

Dividing out the center of the U(2) one is led to the SO(3) solution

Φij = −2iǫijkφ
k, Aij = −2iǫijkA

k, (4.2)

with the vectors ~φ = (φ1, φ2, φ3) and ~A = (A1, A2, A3) still given by eq. (3.9).

Now we proceed to study the two natural limits of these solutions.

4.3 U(2) and SO(3) monopoles with one minimal singularity

A solution for a U(2) monopole with only one minimal Dirac singularity is obtained by

considering the limit with ~p2 → ∞, leading to

Φ =
e

4z
+ ~σ · ~φ, A = − e

2zD (~r × ~z) · d~x+ ~σ · ~A, (4.3)
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with

~φ =

((

λ+
1

4z

)

K

L
− 1

2r

)

~r

r
− r

2zL
√
D

(

~d− ~r · ~d
r2

~r

)

, (4.4)

~A =

(

(

λ+
z + d

2D

)
√
D
L

− 1

2r

)

~r × d~x

r
− r

2L
√
D

(

~z × d~x

z
+

(

K√
D

− 1

)

(~r · (~z × d~x))

rz

~r

r

)

.

Here we make use of the function D = (z + d)2 − r2, as well as

K = (z + d) cosh(2λr) + r sinh(2λr), (4.5)

L = (z + d) sinh(2λr) + r cosh(2λr). (4.6)

These expressions reproduce the first solution of [12], which was obtained in [13] directly

via the Nahm transform using a different set of corresponding Nahm data.

An SO(3) BPS monopole with one singularity is given by eqs. (4.2) with ~A and ~φ as

given above in eqs. (4.4).

4.4 Coincident singularities

The limit of coinciding singularities ~p2 → ~p1 produces a pure SU(2) solution:

Φ = ~σ · ~φ, A = ~σ · ~A, (4.7)

with

~φ =

((

λ+
1

2z

)K
L − 1

2r

)

~r

r
− r

zL

(

~d− ~r · ~d
r2

~r

)

, (4.8)

~A =

((

λ+
z + d

D

)D
L − 1

2r

)

~r × d~x

r
− r

L

(

~z × d~x

z
+

(K
D − 1

)

(~r · (~z × d~x))

rz

~r

r

)

,

where

K = ((z + d)2 + r2) cosh(2λr) + 2r(z + d) sinh(2λr),

L = ((z + d)2 + r2) sinh(2λr) + 2r(z + d) cosh(2λr).

This is the second solution analyzed in [12].

5. Conclusions

The solutions presented here can be used in a number of physical contexts, some of which

we now discuss.

The Dirac-GNO singularities have the interpretation as ’t Hooft operators [14]. The

’t Hooft operators are the disorder parameter fields of the QCD and the behavior of their

Green’s functions has direct bearing on the question of confinement. The leading classical

terms of these Green’s functions is delivered by the classical tension of the Dirac string.

The monopole configuration described here provides one of the nonperturbative corrections
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contributing, for example, at finite temperature as well as at the finite volume. Lifting

the two singularity SO(3) solution of eqs. (4.2), (3.9) to a configuration in the SU(2)

gauge theory results in a configuration containing a physical Dirac string connecting the

two singular points. From the four-dimensional point of view it describes a nonabelian

monopole in SU(2) in the presence of two world-lines of the Dirac singularities. The Dirac

monopoles are the genuine ’t Hooft line operator in the original sense of [14], and the

world-sheet of the Dirac string connecting them signifies a physical interface between the

two vacua related by the Z2 symmetry of the center of the gauge group.

The significance of ’t Hooft operators for the Montonen-Olive duality [15] is elucidated

in [16] where they emerge as S-dual partners of the Wilson-Polyakov operators. ’t Hooft

operators also play significant role as Hecke operators in the supersymmetric gauge theory

realization of the Langlands duality [17].

The screening effects of the singularities by the monopole are also of interest. It

is akin to the instanton bubbling effect. In [12] we demonstrate that a U(2) monopole

cannot completely screen a single minimal singularity, however, we find that it can screen

completely two coinciding singularities of opposite charge. Solutions presented in this paper

provide a continuous family interpolating these two extreme cases. It would be interesting

to explore the ‘partial screening’ of a pair of closely positioned singularities. One can use

such screening to define ’t Hooft-like operators localized in space-time. Namely, if a pair

of coinciding ’t Hooft operators can be screened by a monopole, one can also create such

a pair and a monopole by moving the monopole away at some time ti and then rejoin the

monopole and the singularity at a later time tf . In between ti and tf one can also separate

the two singularities from each other at t1 and rejoin them again at t2 > t1 > ti, thus

creating a conventional ’t Hooft loop between the times t1 and t2 within the monopole-

singulatiry loop.

Our last comment is regarding the moduli spaces of these monopoles. All the

monopoles discussed here have a four dimensional moduli space. The four coordinates

on this space are given by the position of the monopole in the three-dimensional space and

its phase in the gauge group. As discussed in [4] the moduli space of one U(2) monopole

with two minimal singularities is a two-centered Taub-NUT space. (Same holds for the

SO(3) monopole with two singularities.) Thus, following the logic of [18, 19], the low ve-

locity scattering of this monopole off a pair of singularities is given by a geodesic motion

on the two-centered Taub-NUT.

The moduli space of one U(2) or SO(3) monopole with a single singularity is the Taub-

NUT space. The moduli space of one SU(2) monopole with one singularity is a degenerate

Taub-NUT space, which can be viewed as Taub-NUT/Z2.
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